The Eleventh International Conference on Advanced Computational Intelligence,

June 7-9, 2019, Guilin, China

Intelligent Prediction of Vulnerability Severity level
Based on Text Mining and XGBoost

Yun Zhou

Peichao Wang
Science and Technology on
Information Systems Engineering
Laboratory
National University of Defense
Technology
Changsha, China
PeichaoW@163.com

Weiming Zhang
Science and Technology on
Information Systems Engineering
Laboratory
National University of Defense

Technology

Changsha, China

wmzhang@nudt.edu.cn

Abstract—Vulnerabilities have always been important
factors threatening the security of information systems. The
endless vulnerabilities pose a huge threat to the social economy
and public privacy. The vulnerability database provides
abundant materials for researchers to study the threat of
vulnerabilities, while mining the text information of the
database and obtaining valuable information can help to grasp
the severity level of the vulnerability. Based on the textual
description of vulnerabilities in the database, we first use text
mining to extract main features. Then we utilize principal
component analysis to gather sparse features which take sparse
characteristic into consideration. Finally we use XGBoost to
intelligently predict the severity level of vulnerabilities and
compare them with the results of other machine learning
methods based on same extracted features. The experiment on
real-world vulnerability text description show the effectiveness
of our method.

Keywords—severity level of vulnerabilities, text mining, PCA,
XGBoost, threat intelligence

1. INTRODUCTION

The information system plays a vital role in enterprises
and organizations. With the implementation of office
automation, the security and stability of information systems
are of great importance in the business continuity. The
vulnerability is a flaw in hardware, software, protocol
implementation or system security policy, which allows an
attacker to access or destroy an information system without
authorization. With the huge size of source codes and the
complexity of the logic, the exposure frequency of the
vulnerability is getting higher and higher. The impacts of
different vulnerabilities on information systems are different,
which means that developers will ignore some of them after
vulnerabilities being exposed, whereas some will be paid
much attention to and patched in time.

With the improvement of national laws and regulations, in
order to protect the interests of developers and stakeholders,
the way to exploit vulnerabilities after exposure is no longer
exposed, but it is difficult for developers to know the actual
severity of the vulnerability. In open-source databases such as

Science and Technology on
Information Systems Engineering
Laboratory
National University of Defense
Technology
Changsha, China
zhouyun@nudt.edu.cn

Baodan Sun
Science and Technology on
Information Systems Engineering
Laboratory
National University of Defense
Technology
Changsha, China
13022438280@163.com

NVD (National Vulnerability Database), CVSS! (Common
Vulnerability Scoring System) is often used to assess the
severity level of vulnerabilities.

CVSS score is a commonly used approach to assess
vulnerability severity. The scoring process usually requires
the participation of experts. The current version includes 2.0
and 3.0, which will grade a vulnerability from three aspects:
base, temporal and environment. One overall severity (high,
medium, and low) of a vulnerability is obtained based on these
three aspects. However, when a vulnerability has just been
exposed, the severity level has not been evaluated yet, and the
exploitation of the vulnerability often takes only a short time;
developers usually need to arrange the patch of the
vulnerability in a reasonable way while finding out the
vulnerability severity level. Therefore, how to intelligently
predict the severity level of a vulnerability based on its short
description is a valuable research issue.

At present, researches on vulnerabilities are mostly
concentrated on using the combination of source code and
expert knowledge to extract features, and apply machine
learning classifiers to intelligently detect the existence of
vulnerability, or to automatically classify vulnerability types
according to the extracted features to promote vulnerability
management. However, there are few researches on the
severity level of vulnerabilities. Hence, according to the
description of vulnerabilities, we first use text mining to
extract main features. Then we utilize principal component
analysis to gather sparse features which take sparse
characteristic into consideration. Finally we use XGBoost to
intelligently predict the severity level of vulnerabilities and
compare them with the results of other machine learning
methods based on same extracted features. The experiment on

real-world vulnerability text description show the
effectiveness of our method.
II. RELATED WORKS

Traditional methods of security vulnerability analysis
mainly include three types: static analysis, dynamic analysis
and hybrid analysis [1]. Static analysis is a commonly used

! https://www.first.org/cvss/

978-1-5386-7732-2/19/$31.00 ©2019 IEEE

72

manual analysis method, by which security personnel directly
mine possible vulnerabilities from source codes. Dynamic
analysis analyzes potential vulnerabilities in a program when
it is running, which simulates real attackers to test and relies
on the integrity of attack vector. Hybrid analysis is a
combination of above two methods.

The above methods solve specific location of
vulnerabilities in an information system. However,
vulnerability analysis relying on security personnel within the
organization alone is incapable in the current situation of
endless vulnerabilities. The analysis and patch of
vulnerabilities should be determined according to the severity
level and the resources governed by the manager [2].

Open source vulnerability database (for instance, NVD,
CVE, and CNNVD) provides good threat intelligence for
security personnel, and real-time updated vulnerability
database allows them to keep knowing newly discovered
vulnerabilities. However, newly recorded vulnerabilities
usually do not have an assessment of the corresponding
severity level. Patching a vulnerability often requires huge
manual labor and will have a great impact on the business
continuity. The reasonable patch order of the vulnerabilities
should be arranged according to severity level. The prediction
of severity level is an effective way to provide a priority.

Machine learning [3] provide important approaches in the
field of vulnerability research. Text mining [4] was used by
Hovsepyan et al. [5] to analyze source codes of programs
written in JAVA to identify the vulnerabilities contained in the
source code. Yamamoto et al. [6] applied LDA, SLDA and
other models to the crawled NVD data and extracted the text
topic directly to describe the -characteristics of the
vulnerability. Toloudis et al. [7] used the method of text

Data Preprocessing

mining and Spearman correlation coefficient to find the
correlation between the information description and the
severity level of the vulnerability. Chen et al. [8] used the
method of text mining to predict the severity level of phishing
sites based on the warning of phishing sites and the
corresponding financial loss. Chee-wooi et al. [9] proposed a
vulnerability assessment framework to systematically
evaluate the vulnerabilities of SCADA systems at three levels:
system, scenarios, and access points. S. Nazir et al. [10]
provided a comprehensive survey of simulation, modelling
and related techniques which are helpful for assessing the
cyber-attack vulnerabilities of SCADA systems. In general,
there have been many studies that combine machine learning
and text mining to discover vulnerabilities or to classify
vulnerability types automatically, while there are few studies
on the severity of vulnerabilities. Vulnerabilities” descriptions
are good resources to predict their severity levels. Spanos’
work [2] provided a good reference to make connections
between descriptions and severity levels. They used text
mining to process the data crawled from the vulnerability
database, used TF-IDF to obtain keywords as features, and
evaluated the vulnerability severity level with SVM, decision
tree and other classifiers. However, they did not consider the
information contained in the low-frequency vocabulary, and
the final prediction accuracy was only about 80%. This paper
draws on their work and considers the information of low-
frequency vocabulary. It uses the XGBoost algorithm to
evaluate the vulnerability severity level and achieves an
accuracy rate over 90%.

III. VULNERABILITY SEVERITY PREDICTION MODEL

A. The Description of the Methodological Framework

Severity Level Prediction

Source Data
Acquisition

Text Preprocessing

Feature Extraction
Based on Statistical
Features and PCA

Source Data
Acquisition

Vulnerability
Severity Level

Fig. 1. The framework of vulnerability severity prediction model

Figure 1 is the workflow framework of the proposed
vulnerability severity prediction model of this paper, which
contains two parts: data preprocessing and severity level
classification. Data processing mainly solves the problem of
data source and normalization, which can use crawler to crawl
the required data from the cyber and use text mining to
preprocess the acquired data. Severity level classification
extracts features from processed data and uses XGBoost to
intelligently evaluate the vulnerability severity level.

B. Data Preprocessing

Data preprocessing can be divided into two steps: source
data acquisition and text preprocessing.

Open source vulnerability database usually contains the
latest description of vulnerabilities, which is a comprehensive
knowledge database including the release time, index, severity
level and description information. For common users, the

73

vulnerability description is the only source that can be used in
its severity level’s prediction. In this paper, we need to gather
the text description and the severity level of the vulnerability.
For example, a SQL injection vulnerability may have the
following records in the NVD vulnerability database:

TABLE 1. THE SAMPLE OF SQL INJECTION VULNERABILITY
i Severity
Description level
The ‘reportID’ parameter received by the
‘/common/run report.php’ script in the Quest
KACE System Management Appliance High
8.0.318 is not sanitized, leading to SQL
injection (in particular, an error-based type)

Crawler is used to crawl the required data, and the crawled
data contain description and severity level. These data can be
represented as Dy = {Dyyi 1, s Dyt s oor Dy} and

I = pur1s oo Dpuris o lpum} > Where vul represents the

type of the crawled vulnerabilities, D,,,;; represents the
crawled i-th description of the vulnerability, and I, ;
represents the corresponding severity level. To be more
general, we use CVSS v2 score to represent the severity level,
in which the severity level can roughly be divided into three
grades: High (score 7.0-10.0), Medium (score 4.0-6.9), Low
(score 0.0-3.9) representing the possible impact of a
vulnerability on the information system.

After obtaining sufficient text data, we apply text
preprocessing to process the descriptions of the crawled data
to prepare for the extraction of subsequent features. Here we
use four steps: removing punctuation, removing stop words,
removing words that are meaningless for analysis, and
lemmatization. In our work we only consider English
vulnerability database, which means that the words in one
sentence can be directly divided according to spaces and inter-
sentence punctuation. In this paper, the preprocessed record is
represented as Dy,,,; = {Dyy; 1, - Diy i s Dy }-

C. Vulnerability Severity level Prediction

Reasonable feature extraction paves the path for effective
prediction of severity level. Firstly, the feature vector is
constructed to quantitatively represent the pre-processed data.
Then, we use XGBoost to predict the severity level of a
vulnerability by using the constructed feature vector.

After preprocessing each record in the crawled document
D,,;, we count the occurrence time of each word in the
document and establish a word bag model B,,,; based on the
document. After that, the vocabulary in the word bag model is
arranged in descending order according to the appearance
frequency and the sorted word bag model is obtained, B;,,;, =
{(word,, count,), ... (word;, count;) ..., (word,, count,)},
where word; represents the i-th word, and count; denotes the
occurrence number of the corresponding word. Then the
feature vector is established to quantitatively represent a
record Dy, ;. For one record, we select the top [words in By,
and count the appearance times of the corresponding words in
the record Dy, ;. The created vector is shown below:

17{ = (Ni,l‘ ,Ni,j; tNi,l)

In the vector, N; j denotes the occurrence number of the
word ranked in the j-th in the word bag model of record i. One
word’s frequency of occurrence in a document is varied. Thus,
u is manually defined as the frequency threshold. The
appearance frequency of the words below p is discarded in the
word bag model B;,,; so that we can obtain the new word bag

model B, where N Bhuiu represents the vocabulary

number of the new model. In general, the manually defined u
will help to remove some words, but there are still many words
left, and the statistical result of these words in a record as part
of the corresponding vector which will have too many features.
At the same time, these features are commonly sparse and will
have an impact on the final classification results. If just
considering high-frequency vocabulary, a lot of information
will be lost. Therefore, we use PCA to reduce dimensions of
the features other than high-frequency vocabulary.

PCA [11] is trying to achieve the aim of dimensionality
reduction by reorganizing many original indicators with
certain correlations into a new set of mutually independent

comprehensive indicators instead of the original ones. A
threshold p should be picked up for B;,,;; ,,, then for the words
of top p, the appearance time in D, ; is selected as feature
directly. After that, PCA is utilized on remaining words and
create v; to represent record i:

'UL' = (Ni,l! "'!Ni,pv

Piq, s Pig)

In the new vector, we add dimensionality-reduced data to
the former vector v;. In this way, we use the obtained vector
set V={v,,..v;,..,1,} to represent the quantitative

representation of the crawled records.

After obtaining the features, here we use the XGBoost
classifier to intelligently evaluate the vulnerability level based
on them. XGBoost (eXtreme Gradient Boosting) is a boosting
method using the CART regression tree, which can be
formally represented by the model of K trees:

=), f).ficF

In the formula, I?l represents the prediction result, and
fi.(v;) represents the corresponding results predicted by the
CART tree using v;, and F represents the set of all possible
results of CART tree. In this paper, for the three severity levels
of high, medium and low, the values of 2, 1, and 0O are
respectively assigned.

IV. XSS VULNERABILITY SEVERITY PREDICTION
EXPERIMENT

To illustrate the applicability of our method, we carry out
experiments with XSS vulnerability data crawled from the
NVD vulnerability database. XSS is an abbreviation for
Cross-Site Scripting; in order to distinguish it from Cascade
Style Sheets (CSS), it is called XSS. When there exists one
XSS vulnerability, the attacker may injects malicious code
into the web page or the requesting data. When the victim
browses the page or is tempted to click on a link containing
malicious code, the XSS attack will be triggered.

Our experiment first uses the Requests? package which is
written by Python 3.6 to program the crawler, and uses the
crawler to crawl the XSS vulnerability description in the
NVD? vulnerability database. Here we remove the data that
has just appeared and been scored as no severity level. We use
CVSS v2 score in our experiment, and obtain Dygs which
contains 8793 records. Some of them are shown in Table II
below:

TABLE II. THREE SAMPLES OF XSS VULNERABILITY DATA
. Severity
Description level
IBM Business Process Manager 8.6 is
vulnerable to cross-site scripting. This
vulnerability allows users to embed arbitrary
JavaScript code in the Web UI thus altering the Low
intended functionality potentially leading to
credentials disclosure within a trusted session.
IBM X-Force ID: 138135.
In Zoho ManageEngine ServiceDesk Plus | Medium
before 9403, an XSS issue allows an attacker to

2 http://www.python-requests.org/en/master/

74

3 https://nvd.nist.gov/

run arbitrary JavaScript via a
/api/request/?OPERATION NAME=URI, aka
SD-69139

Cross-domain vulnerability in Apple Safari
for Windows 3.0.1 allows remote attackers to
bypass the \same origin policy" and access
restricted information from other domains via
JavaScript that overwrites the document
variable and statically sets the
document.domain attribute.

High

Then, each obtained data is text preprocessed. Firstly, we
remove punctuation and collect common stop words from the
Internet. Stop words appear frequently in sentences but have

no impact on text analysis, such as the, me, my and so on. The
amount of different stop words used in our experiment is 559,
and we get rid of them in our data. Next, we remove the words
which are meaningless to the analysis. The description of XSS
vulnerability must mention its name, so we remove the
following words: xss, cross, site, scripting, cross-site, web and
vulnerability. Finally, lemmatization is performed with
famous Python package NLTK*. After above procedures we
create word bag By to represent words’ situation of our data,
and construct the sorted word bag model BY¢g. The word bag
contains 24817 words, in which the highest frequency is 7499
while the lowest frequency is 1. The word frequency is drawn
below, where we obtain the graph by adding up the
frequencies of every 5 words in Bigg:

Frequency Sum

Fig.2. The bar graph of sums of words frequency

As we can see from Figure 2, most of the words appear in
the word bag very few times. Inspect the data we see up to
17737 words appear only once, and such low-frequency words
will interfere with the subsequent assessment of the severity
level. In our experiment, the threshold p is set to 30, and we
obtain By 3, containing the remaining 625 words, and the
description of a vulnerability is quantitatively characterized by
the number of these words in the corresponding vulnerability
description. Here, we select the top 20 vocabulary words to
create word cloud through Python package Wordcloud®, and
the result is shown in Figure 3:

attackers

arbitrar
script:-

JM“remote

bm

action

.ll'|'f':|||

Fig.3. The word cloud of high-frequency vocabulary

We can learn from the result that the high-frequency
vocabulary contains many possible influences or
implementation methods of an XSS attack. Taking different
numbers of words directly as feature vectors will have
different impacts on the final prediction of the severity level.
In our experiment, let p increase by 5 from 5 to 200, and the
top p words in By are directly taken as features while we
use PCA for the remaining words to reduce the dimension, so
there are 80 sets of different feature vectors. Next, we use the
XGBoost algorithm and the 10-fold cross validation method
to evaluate the vulnerability severity level. At the same time,
comparing to the methods only take the statistics of high-
frequency words as features, the proposed method takes the
frequencies less than p as features and others are directly
discarded. In order to compare the effects of XGBoost to other
algorithms, we carry out the experiments with Support Vector
Machine (SVM), Logistic Regression (LR) and Random
Forest (RF). The results are showing in the figure below:

4 http://www.nltk.org/

75

3 https://github.com/amueller/word _cloud

SVM RF
95 T T T T T T T T T 95 T T T T T T T T T
. el e i e T R
= = e e L S R W
5= 90 - e 0F /4
O 5 i
© |
=3 5 | !
8 85 8 85 | 1
< < |
1
80 ! : : : 80 ! ; ! ' 4 3 : : : 5
0 20 40 60 80 100 120 140 160 180 200] 20 40 60 80 100 120 140 160 180 200
P
LR
95 T T T 95
= 0r E = 20
)) 5]
s || £
=3 I =3
8 85) 8 85
< || <
I
! i L i L L L I L L L L L i
80 80
0 20 40 60 80 100 120 140 160 180 200 o 20 40 60 80 100 120 140 160 180 200
p p
Fig. 4. The comparison experiment of different classification algorithms
Further observation of the results reveals that when p
exceeds 40, the results tend to be stable. Here, the
experimental results of p not exceeding 40 are as follows:
TABLE III. THE RESULTS OF PREDICTION EXPERIMENTS
p 5 10 15 20 25 30 35 40
SVM 91.069% | 91.336% | 91.649% | 91.552% | 91.552% | 91.649% | 91.757% | 91.723%
The results of PCA extracting sparse RF 91.679% | 91.956% | 91.899% | 92.203% | 92.138% | 92.081% | 92.177% | 92.055%
vocabulary
LR 91.342% | 91.200% | 91.563% | 91.245% | 91.245% | 91.637% | 91.126% | 91.609%
XGBoost | 91.870% | 92.314% | 92.337% | 92.928% | 92.928% | 92.382% | 92.581% | 92.382%
SVM 79.429% | 88.340% | 89.645% | 91.282% | 91.282% | 90.975% | 91.288% | 91.146%
- s of oriainal d RF 80.640% | 88.130% | 91.242% | 91.441% | 91.217% | 91.450% | 91.484% | 91.325%
e results of original data
LR 80.569% | 89.434% | 91.182% | 91.308% | 91.308% | 91.168% | 90.873% | 91.453%
XGBoost | 80.480% | 90.634% | 91.634% | 91.833% | 91.833% | 91.941% | 92.114% | 91.907%

As can be seen in Figure 4, the solid line denotes the result
of extracting sparse words with PCA and combining it with
high-frequency words, and the dashed line denotes the result
of directly taking high-frequency words as features. It can be
seen from the experimental results that the accuracy of the
proposed method in this paper is generally higher than that of
the direct use of high frequency vocabulary. Meanwhile,
comparing these four algorithms, XGBoost gets the best result
and the proposed method is more practical than others.

V. CONCLUSION

According to the descriptions of vulnerabilities, this paper
uses text mining to extract keywords and take their statistical
properties as features. Meanwhile, we use PCA to extract the
principle components of the low-frequency words and
establish feature vectors for quantitatively representing the

76

descriptions of the vulnerabilities. The XSS vulnerability data
obtained from NVD is processed by XGBoost algorithm and
the experiment result shows that the accuracy is more than
90%. At the same time, compared with other commonly used
algorithms, the proposed method achieves higher accuracy,
which proves that it will help intelligently evaluate the
vulnerability severity level effectively in time. In the future
work, we would like to develop a practically available
platform and integrate the proposed algorithm.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (Grant No. 61703416) and Natural
Science Foundation of Hunan Province, China (Grant No.
2018113614).

REFERENCES

X. Guo, S. Jin, and Y. Zhang, “XSS vulnerability detection using
optimized attack vector repertory,” 2015 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC). Xi'an, pp. 29-36, September 2015.

G. Spanos, L. Angelis, and D. Toloudis, “Assessment of vulnerability
severity using text mining,” 21st Pan-Hellenic Conference. Larissa, pp.
1-6, September 2017.

S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: a
survey,” ACM Computing Surveys (CSUR), vol. 50, 2017.

R. Feldman and J. Sanger, The Text Mining Handbook: Advanced
Approaches In Analyzing Unstructured Data, 2006 p. 806.

A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden, “Software
vulnerability prediction using text analysis techniques,” Proceedings of
the 4th international workshop on Security measurements and metrics.
pp. 7-10,2012.

Y. Yamamoto, D. Miyamoto, and M. Nakayama, “Text-mining
approach for estimating vulnerability score,” Building Analysis

77

(7]

(8]

[9]

[10]

[11]

Datasets and Gathering Experience Returns for Security (BADGERS).
Kyoto, pp. 67-73, November 2015.

D. Toloudis, G. Spanos, and L. Angelis, “Associating the Severity of
Vulnerabilities with their Description,” International Conference on
Advanced Information Systems Engineering. Ljubljana, pp. 231-242,
June 2016.

X. Chen, I. Bose, A. C. M. Leung, and C. Guo, “Assessing the severity
of phishing attacks: a hybrid data mining approach,” Decision Support
Systems, vol. 50, pp. 662-672,2011.

C. W. Ten, C. C. Liu, and G. Manimaran, “Vulnerability assessment of
cybersecurity for SCADA systems,” IEEE Transactions on Power
Systems, vol. 23, pp. 1836-1846, 2008.

S. Nazir, S. Patel, and D. Patel, “Assessing and augmenting SCADA
cyber security: A survey of techniques,” Computers & Security, vol.
70, pp. 436-454,2017.

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
Interdisciplinary Reviews Computational Statistics, vol. 2, pp. 433-459,
2010.

