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Abstract—With the continuous expansion of data availability 
in a number of daily fields,  such as surveilance,  security,  and 
finance,  people usually  meet the challenge of imbalanced data, 
which might introduce over-fitting risk in model training. Typi- 
cally, people use sampling methods in imbalanced learning appli- 
cations that  consists of the modification of an imbalanced dataset 
by some sampling  approaches  (e.g.,  random oversampling and 
undersampling) to provide a balanced data distribution. However, 
these methods  may discard  potentially  useful samples. Feature 
selection can reduces irrelevant features for improve performance 
of model, in this condition,  some key and relevant features may 
be delete, however, it should be retained. To solve this problem, 
correlation data analysis can take sing-view features divide into 
multi-view features to process. Therefore, multi-view data process 
is another  task in this paper. To address these challenges, in this 
paper, we proposed an Multi-view features Imbalance  sampling 
approach via Self-Paced Learning  (MISPL) to effectively  select 
the high confidences  samples  and separate  close features   for 
improving the robustness of the training model. Compared with 
other traditional  sampling approaches, the results of experiments 
showed  that our proposed   MISPL  approach had improved 
performance of classification by about 15.3%.  Especially, G-mean 
increased 11.5% than original training result (average value of 
other sampling method)  on the experimental  datasets. Finally, 
our experimental results pass the Friedman  test and Holm test, 
which indicate that our experimental processes have significant 
difference. 

 

Index Terms—Imbalanced   classification, Multi-view adaptive 
sampling, Classification, Self-paced learning 

 
 

I.  INTRODUCTION 
 

In recent years, the imbalanced learning problem has drawn 
a  significant amount of  interests  from academia,  industry, 

and government funding agencies. Most standard algorithms 

assume or expect balanced class distributions  or equal misclas- 

sification  costs [1]. Thus, it is urgently  needed to investigate 
sampling algorithms for classification. Machine learning tech- 

nologies are typically used to find the relationships of instance 

features. In some cancer instances, it includes many number 
normal samples and only a few of tumor samples, which might 

introduce  the over-fitting risk in the learning [2]. In other 

words, the standard algorithms  fail to learn at the imbalanced 
datasets. In most disease prediction  systems, there are many 

clients while a few of them are patient and the others are all 

healthy. So it is very common to face the imbalanced  dataset 

problem [3]. 

To solve this problem, people introduce sampling methods, 

which include random oversampling  and undersampling [4], 
informed undersampling  [5],  synthetic sampling with data 

generation [6]. Sampling is a class of methods that alters the 

size of training sets by sampling  a smaller  majority training 

set or repeating instances in the minority training  set. It hope 

that a  more balanced  training set  can give  better results. 

However, the common sampling is randomly  chooses samples, 

which might discards potentially  useful data. Recently, people 
propose the self-paced learning  approach which mimics the 

cognitive  mechanism of humans and animals that gradually 

learns from easy to hard samples, and keep the samples with 

high confidences and delete the samples with high noises. It 
has been successfully  applied in multi-task learning [7], image 

classification [8], weakly supervised object detection [9]. 

Multi-view  learning is  concerned  with  the problem of 
machine learning from data represented  by multiple distinct 

feature  sets.  The recent emergence  of this learning mech- 

anism is largely motivated by the property of  data from 

real applications  where examples are described by different 
feature sets or different “views”. For instance, the applications 

of multi-view learning  range from dimensionality  reduction 

[10], active  learning [11], clustering  [12]. A  large number 
of promising multi-view algorithms  have been developed  in 

various fields. As we all know, previous  works main is to 

develop clustering,  i.e., unsupervised  learning style. Mean- 
while, these works [13–15] fuse similarity measurements from 

diverse views to construct  a graph  for multi-view examples, 

which successfully  extends conventional  multi-view spectral 

clustering.  These  works give  us  inspirations,   therefore,  in 
this work, we try to take multi-view transfer into supervised 

learning, i.e., multi-view features are generated by the between 

features correlation  analysis. Since the increasing request that 
describing   a stuff more and more detailed, single-view  data 

is hard to satisfy the demand. For example, the datasets on 

Alzheimer’s disease (AD) is usually joint different data that 

achieved by neuroimaging method into a long vector [16]. By 
this way, the data can contain more information  and it can be 

more accurate to classify  these data. However,  it is also more 

difficult at the same  time to mine useful information from 
the data. 1) Since every view of data is independent, it will 

affect the independence of every view in combined data if 

we directly joint all views. 2) This kind of data is usually 

with high-dimension,  thus it  is hard to build an effective 
model because of the curse of dimensionality [17]. Moreover, 

between features may exist similar, which lead to over-fitting 

generally. For example,  human faces  usually have  highly 
varied poses  in faces  recognition, if  training these samples 

directly, it lead to overfitting, because of this large variance in 

face pose [18, 19]. Else if use dimensionality  reduction,  the 

key feature may been deleted. In this condition, we consider 
to take sing-view  features transfer into multi-view features for 

more robustness of model. Many privous works imply multiple 



generative multi-view methods,  such as principal component 
analysis (PCA) [20], co-training [21]. However, to the best of 

our knowledge,  there are no related works how to generate 

multi-view, and combine with self-paced learning to apply in 
imbalanced problems. 

In this paper, we consider to utilize the benefits of multi- 
view adaptive sampling and self-paced learning to solve imbal- 

anced distribution  in imbalance  datasets. Specifically, we use 

correlation analysis to produce multi-view features data from 
origin data. Then, we suggest adopting the self-paced learning 

technique to select the initially high-confidences  datasets, and 

thereby avoid the noisy samples effect and cold start problem 

as  much as  possible.   That is to say,  we use  the benefits 
of multi-view adaptive sampling  and self-paced learning  to 

select the samples with high-confidences for more effectively 

and improve  the robustness  of the model. Experiments are 
conducted  on twenty-six binary-class  imbalanced  data sets, 

and the results demonstrate  that the proposed  algorithmic 

framework is generally more effective and efficient  than sev- 

eral state-of-the-art  sampling  methods that were specifically 
designed for the imbalanced classification scenario. 

The remaining  sections are organized   as follows. Section 
II gives  a brief survey of this paper. In section III, a multi- 

view imbalanced self-paced learning framework  is proposed 

to produce  multi-view features  and process  noisy samples 
for improving the performance of classification.  Section IV 

presents the experimental  results involved  a pure data character 

and experiments of eighteen real datasets for verification. The 

conclusion  and summary are shown in section V. 
 

 
II.  RELATED WORKS 

 

As discussed above,  the sampling  methods of imbalanced 

samples  are the key  task in  order to provide a  balanced 

distribution. The balanced dataset provides  improved  overall 

classification performance compared to an imbalanced  dataset 
[22]. Thus, many works try to address this challenge in the 

past few years. Mazurowski  et al. [23] investigated   a neural 

network method for imbalanced  training data. The results 
show the BP model is generally  preferable over evolution 

method for imbalanced training data especially with small data 

sample and large number of features. Yang et al. [24] used the 

evolution  algorithm with multiple classifiers  for remedying 
the class imbalance problem  in medical and biological data 

mining. However, one of the most used techniques  to deal 

with  imbalance   datasets  is  preprocessing  the data in  the 
learning process. For example, people [25] used evolutionary 

algorithms to select the most suitable  generalized examples 

for imbalanced  datasets. 

Aside from the basic undersampling  and oversampling 

methods,  some famous  methods are also proposed in more 

complex ways. Synthetic Minority Oversampling Technique 
(SMOTE) [26] added new synthetic minority class examples 

by randomly interpolating  pairs of closest neighbors  in the 

minority class.  Edited Nearest Neighbours  (ENN) [27] re- 
moves all instances which have been misclassified by the k-NN 

rule from the training  set, the idea of ENN relies on the fact 

that one can optimally eliminate outliers and possible overlap 

among  classes from a given training set so that the training 
of the corresponding  classifier becomes  easier  in practice. 

EasyEnsemble [28] is chosen  samples  several  subsets from 

the majority class, trains a learner  using each of them, and 
combines the outputs of those learners. 

Self-paced  learning,   as a new learning  strategy,  has been 

applied in many tasks in recently years [29]. Jiang et al. [30] 
proposed  SpaR method  to solve multi-instance multimedia 

event detection problem. Zhang et al. [31] proposed SP-MIL 

model to achieve saliency detection. Jiang et al. [32] proposed 
SPLD method  to video action recognition.  Xia et al. [33] 

proposed collaborative  matrix method to predict DrugTarget 

interactions. 

Multi-view  learning has  two representative  techniques 

canonical correlation  analysis [34] and co-training [35]. Co- 

training is originally designed for datasets with two distinct 
views. It trains classifiers separately on each view, and adds 

the most confidently  predicted examples of either classifier 

to the training set  of the other in each  iteration. From the 

procedures  of co-training, it  can be found that it  requires 
the predictions on each view to be accurate. In other words, 

the overall  classification  results may be deteri-orated if either 

classifier  provides  erroneous information to the other [36]. 
The canonical correlation analysis aims to learn two types of 

mapping functions to project two views into a common  space, 

maximizing their correlation [37]. Also, later lots of theories 

and methods have been devised to investigate. Some existence 
data may collect from different domains, therefore, we take 

sing-view transfer into  multi-view features.  The common 

methods, such as  principal component  analysis (PCA) [20] 
and co-training  [38], manually generating multiple views can 

still improve work favorably. 
 

 
III.  METHODS 

 

In real-world  machine learning applications, there are often 

multiple ways to represent the features of an example.  For 
instance,  a  web page can be represented  by words in the 

page while it can also be represented by all the hyper-links 

referring to it from other pages. Similarly, an internet image 

can be represented by the visual features within it and also 
by the text surrounding  it. Generally,  the research  to deal 

with this problem is known as  multi-view learning and has 

attracted wide interests in recent years [39]. Various methods 
have been proposed  to learn with multiple views better than 

the naive  approach of using one view or concatenating  all 

views [40, 41]. Even when there are no natural multiple 

views, manually generating multiple views can still improve 
work favorably [42]. Therefore, we use correlation  analysis to 

generative multi-view features for improving effectiveness of 

model. 
 
 
A. Generative multi-view features 
 

Generally  speaking, correlation  analysis is wide used to 

analyze the linear correlation between two variables.  Pearson 

correlation coefficient as  one of various ways, is used to 
measure the correlation  between two variable. In particular, 
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j=1 
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we define a Pearson correlation  coefficient  ruv  between two 

variables U and V as follows, 

the optional information according to the learning objective 
(e.g. yj   can be the label of xj   in a classification   model). 

 
ruv = 

 n 
i=1 (Ui − Ū )(Vi − V̄  ) 

Su Sv 

 
, (1) 

Let f (xj , w) denotes the learned model and w is the model 
parameter. L(yj , f (xj , w)) is the loss function of j-th sample. 
The objective of SPL is to jointly optimize the model param- 

where Su and Sv are standard deviation of variables U and V , 
respectively. The ruv value is in a range of [−1, 1], when it is 
quite close to both ends, variables  U and V are further  cross 

correlation. In this situation, variables are divided  into multi- 

eter w and latent sample weights v = [v1 , v2 , ..., vm ] via the 

following minimization problem: 

m 了 

view features. The more correlation  variables are, the more 
views will been have. Each view’s features will been training 

min E(w, v; λ) = 
w,v 

 
j=1 

vi L(yi , f (xj , w)) + g(λ, vj ),  (2) 

respectively, best result will be output value of model. 

 
B. Multi-view sampling with self-paced  learning to imbal- 

anced samples 

In  order to annotate  the above  concerns,  we integrated 
the self-paced  learning approach  and multi-view adaptive 

sampling technique in this paper. The process of our proposed 
method is shown in Algorithm 1. At first, multi-view features 
are generated by correlation  analysis. Then, a classifier f (e.g. 

a Logistics  regression) is trained on the i-th view and the final 

classifier is obtained by next steps. Then, the while of model 

converge when the achieved number of majority samples not 

less than number of minority samples.  In particular, high 

confidences samples {(x̂, ŷ)} are chosen firstly by MISPL for 

where g(λ, vj ) is self-paced regularize and λ is a penalty  that 

controls the learning pace. Specifically,  giving sample weights 
v, the minimization over w is a weighted  loss minimization 

problem,  independent on regularizer  g(λ, v); Giving model 

parameter w, the optimal weight of j-th sample is determined 

in Equation (3), 

minvj 
vj L(yj , f (Xj , w)) + g(λ, vj )  (3) 

Since lj  = L(yj , f (Xj , w)) is constant once w is given, the 

optimal value of vj  is uniquely determined by the correspond- 
ing minimizer function σ(λ, lj ) that satisfies 

σ(λ, lj ) + g(λ, σ(λ, lj )) ≤ vj lj  + g(λ, vj ), ∀vj  ∈ [0, 1]  (4) 

For example,  if  g(λ, vj )  = −λvj   [29], the optimal v∗   is 
samples balanced distribution. 

 
Algorithm 1: MISPL

 

calculated by 
 

v∗
 

 
1 if  lj  ≤ λ 

 
Input: Training  set (x, y)m

 

and a stepsize µ 

 
, initial SPL weights v0 , 

j = σ(λ, lj ) = { 
0 otherwise  

(5)
 

 

By gradually increasing  the value of λ  so  that µ more 

Output: Model output result Re 

Learn Multi-views: according to Equation (1) to obtain 

multi-view features Fn based various  features. 

if i=1 → n then 
Learn a classifier: solve Equation (2) to obtain L 

based v. 

while not converged do 
Updated λ: Find optimal pseudo label for each 
of selected instance by solving 

λ∗ = argminλ 

  
v∗L(yi , g(xi ; w)) + g(λ, v∗) 

samples  will  be added in  the next iteration, increasingly 
low quality samples  are included into the training process 

until dataset balanced distribution.   Many existing  researches 
have been devoted to learning appropriate minimizer functions 

[43, 44], which are classified as SPL with explicit regularizers, 

since they usually require the explicit  form of regularizer 
g(λ, v).  σ(λ, l) is then derived from the form of g(λ, v). 

Finally, undersampling  samples with high confidences make 

positive and negative samples consensus. 

i 

; 

if λ∗  is small then 

i 

IV.  EXPERIMENTAL RESULTS 

increase with λ by the stepsize µ; 
end 

end 
λ is obtained to solve Equation (3), next updated 
training samples are obtained to train a model. 
then: result Rei  is obtained by test samples 

according to above training model. 
end 
The highest Re is returned by compared to above 

output value Re. 

    Return:  Re   

 
In this work, a number  of majority samples with high con- 

fidences of number equalled minority samples are chosen to 

train model. Therefore, giving  training  dataset D = (xi , yi )
m

 

with m samples, where  xj   ∈ Rd  is the j-th  sample, yj   is 

In this section, in order to further evaluate the proposed 

method, experiments are conducted and analyzed in details to 
explore the performance improvement.  This original dataset 

contains the expression  profiles are from  internet public 

variable  datasets, such  as US National Library of Medicine 

National Institutes of  Health and the UC Irvine Machine 
Learning Repository, furthermore details are shown in Table 

I. 

Table I shows details of training samples, including  multiple 
types datasets, such as biomedical,  finance,  recognition.  The 

biggest imbalanced ratio is 129.4. The breast cancer dataset, 

as  a  example,   includes 569 samples,  among 212 minority 
samples  and 357 majority samples,  their imbalance  sample 

ratio is 1.68, each sample also includes 30 attributes. With the 
increase of training model parameter λ, the accurate training 

rate is steadily  changed. A group of samples with balanced 



11.67% with One Sided Selection, i.e. increased about 64% are ranked from one to the number of methods, respectively. 
 

r 

N 

TABLE I 
26 P UBLICLY AVAILABLE DATASETS USED IN THE EXP ERIMENTS , 

#min/#maj  is the size of minority and majority class 

 
Dataset Samples #min/#maj Ratio Attributions 

Ionosphere 
Vehicle1 
Vehicle2 
Vehicle3 
Wine-white 
Glass- 
small vs large 
Ecoli1 
Ecoli2 
Car-good 
Glass6 
Yeast3 
Ecoli3 
Page-blocks0 
Abalone19 
Network se- 
curity detec- 
tion 
Vowel0 
Glass5 
Yeast6 
Zoo-3 
Winequality- 
red-6 
Letter 
Recognition 
Cardiotoco- 
graphy C1 
Mfeat-mor0 
Credit card 
clients 
Magic 

 
Breast 
cancer 

315 
846 
846 
846 
4898 
214 

 
336 
336 
1728 
214 
1484 
336 
5472 
4174 
8793 

 
 

988 
214 
1484 
101 
1599 

 
20000 

 
2126 

 
1808 
30000 

 
19020 

 
569 

126 / 189 
217 / 629 
218 / 628 
212 / 634 
1060 / 3838 
51 / 163 

 
77 / 259 
52 / 284 
69 / 1659 
29 / 185 
163 / 1321 
35 / 301 
559 / 4913 
32 / 4142 
1824 / 6969 

 
 

90 / 898 
9 / 205 
35 / 1449 
5 / 96 
217 / 1382 

 
789 / 19211 

 
384 / 1742 

 
1207 / 601 
6636 / 
23364 
6688/ 
12332 
212 /357 

1.50 
2.90 
2.88 
2.99 
3.62 
3.20 

 
3.36 
5.46 
24.04 
6.38 
8.10 
8.60 
8.79 

129.44 
3.82 

 
 

9.98 
22.78 
41.40 
19.20 
6.37 

 
24.3 

 
4.5 

 
2.0 
3.0 

 
1.8 

 
1.68 

34 
18 
18 
18 
11 
9 

 
7 
7 
6 
9 
8 
7 

10 
8 

444 
 
 

13 
9 
8 

16 
11 

 
16 

 
22 

 
216 
23 

 
11 

 
30 

 

 
 

distribution is selected to training next cycle under the multi- 

view features in the MISPL. 

Before star  our training, 70% of  samples  are used in 

training set, 30% of  samples  are used in  testing set. In 

order to assess the accuracy  of classification, AUC, F1-Score, 

and G-mean are also used in the experiment.  Some famous 
sampling  methods are used in this paper for comparing the 

advantage of our proposal method, including Edited  Nearest 

Neighbours  (ENN) [27], Synthetic Minority  Oversampling 

of F1-score  by MISPL. On other hand, standard  deviation 
average value of MISPL is higher than others, which indicates 

that our proposed MISPL method is robustness in general. In 

particularly,  comparison with different models in term of F1- 
Score in various data, result of MISPL common is better than 

other models, that implying MISPL model effectiveness better 

than other sampling methods. 

Meanwhile, Table III shows that average G-mean of MISPL 
value is higher than other approaches. The highest improved 

G-mean  value with MISPL is 94.48% in Yeast3,  previous 

value is 12.37% with ENN, i.e. increased highest about 82% 

of G-mean  by MISPL. On other hand, standard  deviation 
average value of MISPL is higher than others, which indicates 

that our proposed  MISPL method is robustness  in general. 

Simultaneously, we find that standard deviation  value of G- 
mean  is higher than F1-score, which indicates that MISPL 

pay attention to true positive value. 

ROC (Receiver Operating Characteristic)  is one of styles 
to assess performance of the model, experimental results with 

multiple training  times are shown in Table IV. Table IV also 
shows  that average  AUC of MISPL is higher than others. 

However, standard deviation value of MISPL is slightly higher 

than ENN, which indicates robustness of MISPL is less than 

ENN. 

Table II,III,IV  show that average performance  with AUC, 
F1-Score and G-mean are compared in seven sampling  meth- 

ods on 26 datasets.  Our MISPL method is highest in six 

performance  measure, which indicates  that MISPL method 
are effectively  and robustly. Average F1-score increased about 

20% than One sided selection training, average G-mean  in- 

creased  about 19% than ENN training, and average  AUC 

increased  about 15% than ENN training. Meanwhile, other 
models, such as SMOTE,  are also improving  performance of 

model. 
 

 
A. Friedman  test 

To compare the statistical significance of performance of our 

proposed with existing methods, we adopted the Friedman test 
used in the study [47]. Based on the performance ranking of 
different approaches in eight datasets, the Friedman  test can 
measure the statistical differences in multiple methods. The 
Friedman estimator FF , followed by a Fisher distribution,  is 

shown in Equation (6). 

(ND − 1)χ2 

Technique  (SMOTE) [26], EasyEnsemble  [28], One Sided 

Selection [45], and Neighborhood Cleaning Rule (NCL) [46]. 

FF  = 
 
NM

 

r , 
ND (NM − 1) − χ2 

2
 

Table II  by line of comparison  shows that F1-score  of
 

χ2  12ND
 了 

2  NM (NM + 1) 
 

MISPL is more than other sampling approaches clearly,  such 

as EasyEnsemble,   SMOTE. The comparison  results of pro- 

r = 
M (NM 

( 
+ 1) 

 
i=1 

Ri  − ), 
4 

ND  rij
 

posed sampling  method  with other previous  methods show 
that the proposed MISPL  method always outperforms others in 

Ri  = 
j=1 

ND 
, (6) 

term of F1-Score. The best F1-score value achieved by MISPL 

model is 96.49% on the Vehicle2 dataset,  which is about 

2% higher than the worst F1-score value with EasyEnsemble 
(94.98%). The highest improved  F1-score value with MISPL 

is 75.57% in network security detection,  previous  value is 

where NM  is the number of approaches, ND  is the number 

of data sets,  Ri   is the average  ranking in the ith  method, 

and rij   represents the ranking of ith approaches on the jth 

dataset. For each dataset style evaluation, the AUC, F1-Score, 

G-mean and standard deviation (Std.) value of MISPL method 



TABLE II 

and G-mean.  The average rankings  for MISPL (RM I SP L ) 

 

 

rα
 

rα
 

ij 

ij 

COMPARIS O N W ITH DIFFEREN T MODELS IN TERM OF F1-SCORE ON DIFFERENT DATAS ETS 

 
Dataset ENN SMOTE EasyEnsemble One side selection NCL ISPL MIPSL 

Ionosphere 
Vehicle1 
Vehicle2 
Vehicle3 

Wine-white Glass-
small vs large Ecoli1 

Ecoli2 
Car-good 

Glass6 
Yeast3 
Ecoli3 

Page-blocks0 
Abalone19 

Network  security detection 
Vowel0 
Glass5 
Yeast6 
Zoo-3 

Winequality-red-6 
Letter Recognition 
Cardiotocography 

Mfeat-mor0 
Credit card clients 

Magic Brest 
cancer Avg. 

.7543 ± .036 

.7828 ± .039 

.952 ± .007 

.7278 ± .045 

.5041 ± .056 

.8428 ± .054 

.7629 ± .042 

.3488 ± .077 

.4287 ± .112 

.8622 ± .075 

.1237 ± .055 

.8809 ± .009 

.8349 ± .040 

.8669 ± .018 

.3308 ± .080 

.8546 ± .054 

.5381 ± .065 

.6000 ± .363 

.6288 ± .425 

.4716 ± .077 

.8953 ± .024 

.7146 ± .034 

.9105 ± .043 

.5934 ± .023 

.7544 ± .007 

.9561 ± .031 

.6893 ± .073 

.7628 ± .062 

.7562 ± .032 

.9499 ± .020 

.7614 ± .004 

.6973 ± .041 

.9073 ± .033 

.8859 ± .064 

.8713 ± .028 

.8859 ± .009 

.8912 ± .039 

.9206 ± .035 

.8982 ± .072 

.8698 ± .037 

.8775 ± .021 

.7091 ± .146 
.948 ± .028 

.8747 ± .057 

.8511 ± .091 

.7906 ± .141 

.7487 ± .095 

.9149 ± .022 

.8332 ± .031 

.9213 ± .022 

.6446 ± .019 

.7600 ± .008 

.9592 ± .022 

.8419 ± .045 

.7724 ± .050 

.8027 ± .025 

.9498 ± .017 

.7534 ± .043 

.7226 ± .010 

.8796 ± .074 

.8903 ± .070 

.8472 ± .041 

.8903 ± .046 

.8912 ± .039 

.8833 ± .035 

.8601 ± .074 

.8283 ± .107 

.8785 ± .010 

.7226 ± .010 

.9222 ± .031 

.8968 ± .025 

.8511 ± .089 

.8072 ± .089 

.7558 ± .042 

.9002 ± .012 

.8308 ± .034 

.9248 ± .019 

.6609 ± .017 
.7595 ±.0055 
.9468 ± .021 
.8396 ± .040 

.7758 ± .052 
.632 ± .040 

.9558 ± .011 

.5915 ± .053 

.3572 ± .044 

.8531 ± .082 

.7243 ± .093 

.3078 ± .116 

.7243 ± .419 

.8724 ± .034 

.0719 ± .032 

.8439 ± .068 

.6227 ± .043 

.8371 ± .054 

.1167 ± .032 

.8318 ± .084 

.5234 ± .046 
.76 ± .146 

.5685 ± .073 

.2791 ± .103 

.8970 ± .017 

.6030 ± .054 

.9070 ± .043 
.5276 ±.0097 
.6892 ± .008 
.9554 ± .012 
.6472 ± .068 

.7904 ± .060 

.7709 ± .027 

.9503 ± .017 

.7288 ± .037 
.495 ± .075 

.9097 ± .047 

.8166 ± .014 

.3117 ± .078 

.8166 ± .072 

.8853 ± .073 

.1246 ± .031 

.8486 ± .036 

.7905 ± .115 

.7448 ± .034 

.3012 ± .026 

.9013 ± .039 

.5726 ± .076 

.8267 ± .167 

.5275 ± .060 

.4834 ± .084 

.8971 ± .014 

.7166 ± .042 

.9206 ± .044 

.5914 ± .010 

.7613 ± .006 

.9253 ± .018 

.7080 ± .050 

.7982 ± .048 

.8162 ± .025 
.955 ± .011 

.7939 ± .018 

.7479 ± .015 

.9445 ± .042 

.8963 ± .039 
.84 ± .037 

.8963 ± .023 
.919 ± .066 

.9067 ± .138 

.9109 ± .050 

.8679 ± .051 

.8841 ± .014 
.689 ± .012 
.826 ± .019 
.933 ± .052 
.88 ± .110 

.843 ± .028 

.782 ± .025 
.9035 ± .012 
.8153 ± .029 
.9330 ± .025 
.6822 ± .020 
.8102 ± .013 
.9323 ± .030 
.8541 ± .037 

.8204 ± .030 

.8248 ± .018 

.9649 ± .015 

.8255 ± .017 

.7557 ± .014 

.9604 ± .015 

.9111 ± .035 

.8734 ± .013 

.9111 ± .036 

.9306 ± .064 

.9448 ± .059 

.9241 ± .033 

.9357 ± .049 

.9166 ± .023 

.7557 ± .014 
.8827 ± .019 
.9603 ± .008 

.96  ± .089 
.8611 ± .073 
.8025 ± .023 
.9212 ±.007 
.8419 ±.047 
.9345 ±.010 
.6862 ± .014 
.8207 ± .011 
.9639 ±.007 
.8804 ±.029 

 
TABLE III 

COMPARIS O N W ITH DIFFEREN T MODELS IN TERM OF G-MEAN ON DIFFERENT DATAS ETS 

 
Dataset ENN SMOTE EasyEnsemble One side selection NCL ISPL MIPSL 

Ionosphere 
Vehicle1 
Vehicle2 
Vehicle3 

Wine-white Glass-
small vs large Ecoli1 

Ecoli2 
Car-good 

Glass6 
Yeast3 
Ecoli3 

Page-blocks0 
Abalone19 

Network  security detection 
Vowel0 
Glass5 
Yeast6 
Zoo-3 

Winequality-red-6 
Letter Recognition 
Cardiotocography 

Mfeat-mor0 
Credit card clients 

Magic Brest 
cancer Avg. 

.7782 ± .0298 

.7811 ± .040 

.9520 ± .006 

.7416 ± .039 

.5779 ± .041 

.8505 ± .050 

.7779 ± .035 

.4585 ± .063 

.5214 ± .087 

.8693 ± .068 

.2512 ± .067 

.8863 ± .009 

.8444 ± .036 

.8746 ± .016 

.4430 ± .062 

.8644 ± .048 

.6069 ± .050 

.6243 ± .371 

.6909 ± .355 

.5543 ± .059 

.9004 ± .022 

.7429 ±.029 

.9131 ± .041 

.6463 ± .018 

.7666 ± .006 

.9568 ± .030 

.7260 ± .066 

.7815 ± .050 

.7616 ± .026 

.9505 ± .019 

.7593 ± .011 
.7099 ± .031 
.9108 ± .031 
.8751 ± .076 
.8652 ± .024 
.8751 ± .013 
.8956 ± .037 
.9220 ± .032 
.9024 ± .065 
.8673 ± .046 
.8749 ± .018 
.7004 ± .115 
.9479 ± .027 
.8768 ± .054 
.8570 ± .084 
.8106 ± .117 
.7509 ± .080 
.9172 ±.021 
.8162 ± .037 
.9219 ± .022 
.6780 ± .009 
.7697 ± .006 
.9585 ± .022 
.8445 ± .041 

.7906 ± .041 
.7981 ± .027 
.9490 ± .018 
.7560 ± .035 
.7047 ± .023 
.8842 ± .070 
.8847 ± .075 
.8446 ± .039 
.8847 ± .069 
.8956 ± .037 
.8808 ± .036 
.8262 ± .109 
.8035 ± .114 
.8826 ± .008 
.7047 ± .023 
.9169 ± .030 
.8909 ± .032 
.8330 ± .100 
.8059 ± .075 
.7590 ± .037 
.9048 ± .011 
.8084 ± .040 
.9240 ± .020 

.6868 ± .0075 
.7699 ±.0050 
.9474 ± .021 
.8360 ± .042 

.7933 ± .044 

.6742 ± .033 

.9565 ± .011 

.6433 ± .038 

.4658 ± .035 

.8600 ± .074 

.7535 ± .076 

.4240 ± .093 

.7535 ± .338 

.8799 ± .031 

.1894 ± .045 

.8551 ± .058 

.6725 ± .034 

.8490 ± .047 

.2474 ± .035 

.8453 ± .071 

.5954 ± .036 

.7657 ± .131 

.6304 ± .056 

.3980 ± .093 

.9019 ± .016 

.6565 ± .042 

.9096 ± .041 

.5978 ± .008 

.7214 ± .007 

.9555 ± .012 

.6921 ± .058 

.8049 ± .052 

.7715 ± .029 

.9504 ± .018 

.7370 ± .034 

.5693 ± .056 

.9118 ± .045 

.8265 ± .011 

.4282 ± .064 

.8265 ± .056 

.8926 ± .064 

.2563 ± .035 

.8581 ± .032 

.8016 ± .109 

.7705 ± .028 

.4200 ± .021 

.9062 ± .036 

.6335 ± .059 

.8243 ± .160 

.5986 ± .046 

.5639 ± .065 

.9020 ± .013 

.7436 ± .036 

.9225 ± .041 

.6452 ± .008 
.7693 ± .0053 
.9251 ± .017 
.7407 ± .044 

.8042 ± .044 

.7508 ± .042 

.9550 ± .010 

.7171 ± .055 

.6784 ± .028 

.9445 ± .040 

.8734 ± .054 

.8445 ± .035 

.8734 ± .030 

.9094 ± .073 

.9156 ± .121 

.9010 ± .062 

.8552 ± .057 

.8893 ± .012 

.5785 ± .028 

.7594 ± .037 

.9315 ± .056 

.8243 ± .160 

.8444 ± .036 

.7323 ± .057 

.9063 ± .012 

.7857 ± .058 

.9275 ± .034 

.6774 ± .020 
.7826 ±.040 
.9295 ± .031 
.8304 ± .047 

.8254 ± .030 
.7626 ± .031 
.9645 ± .016 
.7809 ± .044 
.7059 ± .008 
.9595 ± .015 
.9012 ± .042 
.8593 ± .027 
.9012 ± .045 
.9214 ± .072 
.9474 ± .056 
.9192 ± .040 
.9257 ± .062 
.9167 ± .022 
.7059 ± .008 
.8560 ± .028 

.9588 ± .008 
.9414 ± .131 
.8630 ± .064 
.7689 ± .030 
.9233 ± .007 
.8460 ± .045 
.9345 ± .010 
.6940 ± .0072 
.8091 ± .023 
.9634 ± .007 
.8675 ± .034 

 
 

In this comparison,  seven different methods are considered. 

ij = 1 denotes the highest AUC, F1-Score, or G-mean and 

ij  = 7 denotes the worst AUC, F1-Score, or G-mean. For 

with NM  - 1 and (NM  - 1)(ND  - 1) degrees  of freedom, 

and the confidence level α is set  as 0.05. Meanwhile, NM 

= 7 and ND  = 26, with degree of freedom NM -1 = 6 and 

model diagnosis  variance  test, rα
 = 1 denotes  the lowest (NM − 1)(ND − 1) = 28 are applied, which obtain  a critical 

diagnosis AUC, F1-Score, or G-mean variation,  and rα  = 7 value of the Fisher distribution F (6, 150) = 2.09. 

represents the model with the highest AUC, F1-Score, or G- 
mean variation.  In this test, FF   follows a Fisher  distribution 

 
Table V shows the Friedman test results for AUC, F1-score 



TABLE IV  

 

M 

COMPARIS O N W ITH DIFFEREN T MODELS IN TERM OF AUC ON DIFFERENT DATAS ETS 

 
Dataset ENN SMOTE EasyEnsemble One side selection NCL ISPL MIPSL 

Ionosphere 
Vehicle1 
Vehicle2 
Vehicle3 

Wine-white Glass-
small vs large Ecoli1 

Ecoli2 
Car-good 

Glass6 
Yeast3 
Ecoli3 

Page-blocks0 
Abalone19 

Network  security detection 
Vowel0 
Glass5 
Yeast6 
Zoo-3 

Winequality-red-6 
Letter Recognition 
Cardiotocography 

Mfeat-mor0 
Credit card clients 

Magic Brest 
cancer Avg. 

.8701 ± .032 

.8728 ± .039 

.9816 ± .014 

.8281 ± .022 

.7366 ± .052 

.9396 ± .038 

.9285 ± .018 

.9573 ± .01 

.8220 ± .023 

.9188 ± .062 

.9741 ± .006 

.9125 ± .009 

.8710 ± .025 

.9197 ± .022 

.6966 ± .009 

.9797 ± .022 

.9728 ± .02 

.8300 ± .144 

.9463 ± .054 

.8228 ± .019 

.9326 ± .005 

.8391 ± .025 

.9678 ± .021 

.7403 ± .012 

.8415 ± .0044 

.9523 ± .007 

.8867 ± .027 

.8866 ± .023 

.8589 ± .015 

.9896 ± .009 

.8306 ± .019 

.7621 ± .018 
.9591 ± .01 
.9285 ± .06 

.9189 ± .028 

.9285 ± .028 

.9188 ± .051 

.9752 ± .013 

.9208 ± .066 

.9110 ± .051 

.9347 ± .011 
.837 ± .122 
.9923 ± .008 
.9663 ± .013 
.9220 ± .087 
.8826 ± .079 
.7883 ± .095 
.9229 ± .010 
.8257 ± .034 
.9736 ± .019 
.7457 ± .009 
.8406 ± .005 
.9518 ± .008 
.8989 ± .034 

.8611 ± .032 

.8749 ± .034 

.9798 ± .015 

.8447 ± .036 

.7605 ± .025 

.9689 ± .029 

.9543 ± .042 

.9004 ± .023 

.9543 ± .074 

.9188 ± .051 

.9387 ± .028 

.9140 ± .073 

.8900 ± .077 
.9256 ± .03 

.7605 ± .025 
.9849 ± .01 

.9660 ± .014 

.9380 ± .051 
.8930 ± .08 

.7870 ± .036 
.9355 ±.0039 
.8260 ± .031 
.9736 ± .014 
.7530 ± .008 
.8425 ± .005 
.9532 ± .003 
.8961 ± .033 

.8669 ± .029 

.8639 ± .031 

.9877 ± .003 

.8453 ± .021 
.7337 ± .01 

.9644 ± .027 

.9372 ± .026 

.9244 ± .043 

.9372 ± .075 

.8688 ± .085 

.9668 ± .014 

.9087 ± .057 

.8412 ± .013 

.9227 ± .009 

.6476 ± .011 

.9813 ± .013 

.9813 ± .012 

.8080 ± .187 

.8230 ± .046 

.7555 ± .062 

.9054 ± .005 

.7878 ± .017 

.9686 ± .029 
.7482 ±.0038 
.8361 ± .006 
.9519 ± .004 
.8755 ± .032 

.8875 ± .039 

.8573 ± .035 
.9904 ± .01 
.8385 ± .03 
.7726 ± .017 
.9422 ± .065 
.9592 ± .012 
.9662 ± .026 
.9592 ± .037 
.9750 ± .026 
.9616 ± .019 
.9236 ± .044 
.8800 ± .141 
.8545 ± .008 
.6607 ± .011 
.9871 ± .01 

.9646 ± .026 

.8900 ± .108 

.8250 ± .054 

.7443 ± .071 

.9038 ± .004 
.8011 ±.015 
.9748 ± .021 
.7451 ± .009 
.8409 ±.0042 
.9443 ± .004 
.8835 ± .033 

.8714 ± .058 

.8775 ± .017 

.9865 ± .008 
.8466 ± .03 

.7425 ± .033 
.9742 ± .02 
.9395 ± .02 

.9422 ± .028 

.9395 ± .027 

.9500 ± .051 

.9719 ± .039 

.9165 ± .054 

.8760 ± .067 

.9372 ± .007 

.6256 ± .017 

.9896 ± .014 

.9435 ± .057 

.8500 ± .137 

.8670 ± .054 

.7774 ± .054 

.9254 ± .014 

.8421 ± .053 
.9835 ± .0064 
.6874 ± .040 
.8724 ± .022 
.9610 ± .018 
.8883 ± .036 

.9064 ± .027 

.8863 ± .023 
.9891 ± .01 

.8486 ± .035 
.7706 ± .021 
.9813 ± .019 
.9709 ± .011 
.9536 ± .054 
.9709 ± .055 
.9875 ± .028 
.9813 ± .034 
.9262 ± .043 
.9290 ± .057 
.9479 ± .008 
.7706 ± .021 
.9877 ± .014 
.9621 ± .018 
.9500 ± .112 
.8920 ± .043 
.8052 ± .04 

.9375 ± .011 

.8994 ± .034 
.9846 ±.0063 
.7440 ± .008 
.8866 ± .013 
.9859 ± .003 
.9175 ± .029 

 
 

TABLE V 
FRIEDMA N TEST RESULTS 

 
Test item RM I SP L χ2 

r FF (2.09) Decison 

F1-Score value 
F1-Score Std. value 

G-mean value 
G-mean Std. value 

AUC value 
AUC Std. value 

1.1 
2.7 
1.4 
3 

1.8 
3.6 

103.5 
23.02 
88.5 
8.25 
35.8 
-1.66 

49.3 
4.32 
32.8 
1.40 
7.4 

-0.26 

Positive 
Positive 
Positive 
Negative 
Positive 
Negative 

 
 

are the best on seven  sampling methods  in  terms of  the 
three performance  measures. Additional,  the results show that 

experimental  results have significant  statistical  difference  of 

the ranking for AUC, F1-score Std. value, F1-Score, and G- 
mean  as well. However, we can know from Table V that G- 

mean Std. value and AUC Std. value are not significant, their 

results cannot to measure ranking. 

 
B. Holm test 

We know from Table V that the results show statistically 
significant  differences. Furthermore, the Holm test is used to 

compare significant differences in the performance of MISPL 

with other methods [48]. The Holm test is a ranking  of mul- 

tiple methods under multiple datasets according  to accuracy 
rate. 

The test statistics for comparing the i-th and m-th approach 

using  these methods  are as follow: 

(Ri − Rm ) 

the i-th classifier of the j-th dataset. The z value is used to 

find the corresponding probability from the normal distribution 
table, which is then compared with an appropriate α. The tests 

differ in the way they adjust the value of α to compensate for 

multiple comparisons. More details are described in [48]. 
According to  the following  description, the F1-Score, 

G-mean and  AUC  are  used to  ranking  these  results. 
Therefore, the  average   ranking  for   each method, F1- 
score as  a  instance,    is  ROneSideSection =6.3, REN N =5.5, 

RN C L =5.2, REasyEnsemble =3.7, RSM OT E =3.5, RI SP L =2.7 

and RM I SP L =1.1, respectively.  The Holm test results are 

shown in Table VI. We know from Table VI that the Holm 
procedure rejects the first to sixth hypotheses since the cor- 
responding p values are smaller than the adjusted αs. These 
results indicate  that pass significant  test statistic. 

 
V.  CONCLUSION 

Imbalanced size data is very common in the widely daily 

application, which causes  great challenges  to existing  min- 
ing and learning algorithms. With the rapid growth of the 

imbalanced  ratio, it  leads to loss lots of key  information, 

which greatly reduces the performance of machine learning 

algorithms,  increases computational complexity,  and reduces 
the prediction ability of learning model. 

This paper proposed a self-paced learning sampling method 
for imbalanced classification in twenty-six real applications. 

Our MISPL could reduce  noise of  imbalance  samples  to 

improve the performance  of classification,  that is, removes 
z =   

N 
 
(NM 

, (7) 
+1) some irrelevant  and redundant samples and finds the suitable 

6ND 

where NM  is the number of classifiers, ND is the number of 
subset.  Compared  with  conventional  methods,  our MISPL 

method  can achieved  improved F1-score  about 15.3%, and 

datasets, and R =    1   ND rd , rj  represents the ranking of G-mean increased 11.5%. 
ND i=1   i i 



 

 

i method z = 
(Ri −RI SP L ) 

6ND 

p α/(NM − i) 

F1-score 

1 
2 
3 
4 
5 
6 

OneSideSection 
ENN NCL 

EasyEnsemble 
SMOTE 

ISPL 

8.68 
7.34 
6.84 
4.34 
4.01 
2.67 

<0.0001 
<0.0001 
<0.0001 
<0.0001 
0.0001 
0.0038 

0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.5000 

G-mean 

1 
2 
3 
4 
5 
6 

OneSideSection 
ENN 
NCL 
ISPL 

EasyEnsemble 
SMOTE 

8.18 
6.68 
6.18 
3.84 
3.5 

2.84 

<0.0001 
<0.0001 
<0.0001 
<0.0001 
0.0002 
0.0023 

0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.5000 

AUC 

1 
2 
3 
4 
5 
6 

OneSideSection 
ENN 
NCL 

SMOTE 
EasyEnsemble 

ISPL 

6.01 
4.84 
4.17 
3.54 
3.48 
3.41 

<0.0001 
<0.0001 
<0.0001 
<0.0001 
0.0001 
0.0003 

0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.5000 

 

TABLE VI 
HOLM  TEST RES ULTS 

 

   
NM (NM +1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This paper using imbalance  samples to classification have 

become  a major concern in the field of machine learning. In 

addition to that, this model can continue to work in the absence 
of any manual labeling for saving much time and cost. It will 

be efficient tool to make solutions for feature selection because 

of its high reliability and strong anti-noise and outliers in some 

dataset. 
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