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ABSTRACT Multi-Task Learning (MTL) is a method to simultaneously utilize commonalities and
differences across tasks to improve the learning performances with limited data. However, in most real-
world problems, there are many sample noises which might decline the performance of MTL significantly.
To address this challenge, Self-Paced Learning (SPL) method is introduced to improve its performance
by increasing the numbers of instances gradually from the simplest samples to the most difficult samples.
In the current self-paced multi-task learning methods, most of them are introduced as a SPL term in the
optimization process, which causes significant limitations in the combination of SPL and MTL. In this
paper, we propose a new flexible framework, which combines MTL with SPL and has two stages in the
learning process to make it more suitable for learning difficult samples and tasks. With this framework, we
are able to take advantages of both of the existing MTL models and SPL models. Further experiments with
the synthetic and real-world datasets demonstrate the higher efficiency of our approach when compared with
other state-of-the-art algorithms.

INDEX TERMS Multi-task learning, Self-paced learning, A new flexible framework, Multi-task self-paced
learning

I. INTRODUCTION
Inspired by human-like reasoning process, MTL can learn
multiple related tasks simultaneously rather than separately,
and also can utilize the shared representations among the
related tasks to fine-tune a generalized model on the original
task [1], [2].

In the past decade, numbers of MTL methods have been
proposed and then applied in various instances, which could
be roughly divided into three major categories [3]–[6]. The
first category assumes that all tasks share a common low-
rank feature representation [7]–[10]. The second category
assumes that different tasks might have shared parameters
in the trained model [5], [8], [11], [12]. Although the above
two strategies have achieved good results, they ignored the
differences of difficulties in the learning process among
different tasks and different learning samples.

To address this deficiency, the third category of MTL is de-
veloped recently and named as Self-Paced Multi-Task Learn-
ing. Specifically, this method adapts a human-like learning

mechanism that trains the model from the simplest samples
and tasks to the most difficult samples and tasks. Thus, this
method achieves improved performances, e.g. SPMTL [13]
and spMMTL [14]. Since these models both have a strong
coupling between SPL and MTL, it will make the scalability
problem of SPL and MTL worse for limited data scenarios.

In this paper, we introduce a flexible framework, which is
named Flexible Self-Paced Multi-Task Learning (FSPMTL),
for self-paced multi-task learning to solve the scalability
problem of these methods. Our FSPMTL model contains two
stages and can flexibly embed different types of SPL models
and MTL models. Specifically, using the SPL mechanism
named the Balanced Self-Paced Learning (BSPL) [15], our
FSPMTL model first selects samples of each task according
to the sample difficulties to get sample difficulty levels. Then
it uses the state-of-the-art MTL models to iteratively train the
samples of different difficulty levels to get the final model.

The main contributions of this paper are summarized as
follows:
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• To the best our knowledge, this is the first work that
presents a common framework to combine SPL with
MTL.

• We propose a progressive self-paced multi-task learning
mechanism, which is distinct from the conventional
ones.

• We make extensive experiments on both synthetic and
real datasets to show the effectiveness of our proposed
framework.

II. RELATED WORK
As one of the current research hotspots, MTL can effectively
improve the overall performance and also increase the robust-
ness of the model by sharing information among the related
tasks. Conventional MTL methods assume that the objective
function parameters of different tasks should be similar [16],
or that multiple related tasks should share the same feature
subset [17]. Those early MTL methods have tried to use
regular term constraints to minimize the differences between
related tasks. However, these methods are prone to negative
transfer. Thus, the recent studies on MTL are primarily based
on sparse representations [18], [19].

Argyriou et al. [7] came up with a MTL-FEAT model
which shared information by learning sparse representations
among multiple tasks. Kang et al. [3] relaxed the constraints
of the MTL-FEAT model and then presented the DG-MTL
model. Based on the MTL-FEAT and DG-MTL models,
Kumar et al. [20] proposed the GO-MTL model to selectively
share the information across the tasks. Subsequently, based
on previous models, Jeong et al. [21] proposed the VSTG-
MTL model, performing the variable group structure be-
tween variable selections and learning tasks. Compared with
the previous MTL models, the VSTG-MTL model greatly
improves the performance of model prediction.

As we know, sample qualities might also affect the model
performance, which could be considered in the model learn-
ing process. Curriculum Learning (CL) mimics the cognitive
process of humans and favors a learning algorithm to follow
the logical learning sequence from simple examples to more
difficult ones [22]. Such “starting small” strategy is very
similar to the human’s knowledge acquisition process from
childhood to adulthood, and also has been demonstrated
effectively in multi-modal learning [23], [24] and semi-
supervised learning [25]. CL was usually realized under two
frameworks: Self-Paced Learning (SPL) [26] and Teaching-
to-Learn and Learning-toTeach (TLLT) [27], [28].

SPL was formally developed in [26], which initiates the
training process with simple samples, and then gradually
takes more difficult samples into the training. It has been
recently shown that SPL is an effective robust learning
regime [29], [30] and has achieved rapid development such as
SPMoR [31] and C-SPCL [32]. Jiang et al. [33] proved that
SPL could avoid falling into local optimum by taking into
account both prior knowledge known before training and the
learning progress during training. Recently, Ren et al. [15]
presented the BSPL model to solve the common imbalanced

classification problem in SPL. The BSPL model can select
training data proportionally from different category labels,
so as to avoid large changes in the category label ratio of
sampled data according to different distribution of sample
difficulty.

Since 2017, people started to utilize the benefits of both
SPL and MTL. Li et al. [13] and Murugesan et al. [14]
suggested a method to couple MTL closely with SPL, and
achieved relatively good results through simple-to-difficult
MTL. In addition, the SPMTL [13] attempts to learn the tasks
by simultaneously taking into consideration the complexities
of both tasks and instances per task, and the spMMTL [14]
embeds task selection into the model learning based on the
shared knowledge. In their models, they both optimized the
parameters of SPL and MTL at the same time, by learning
the difficulty level coefficient and coefficient matrix simulta-
neously. However, the optimization method leads the models
to a low level of scalability and flexibility.

Therefore, we propose a two-stage framework named F-
SPMTL to solve this problem. In the first stage, we use the
SPL model to obtain the sample difficulty matrix E, whose
elements show the difficulties of the samples in each task. In
the second stage, we select new training samples according to
coefficient matrix E, so that we could update the optimized
MTL model to obtain a coefficient matrix W . More details
are discussed in the next section.

III. FLEXIBLE SELF-PACED MULTI-TASK LEARNING
A. VARIABLE SELECTION AND TASK GROUPING FOR
MULTI-TASK LEARNING
Suppose there exists T supervised learning tasks, each
of which contains D variables and Nt training in-
stances. For the t-th task, it has an input matrix Xt =[(
x1
t

)T
, · · · ,

(
xNt
t

)T]T
∈ RNt×D with xnt ∈ RD and an

output vector yt =
[
y1t , · · · , y

Nt
t

]T
∈ RNt . Later on, we can

use a linear model to describe the relationship between inputs
and outputs,

ynt = f
(
wT
t x

n
t

)
(1)

where f is a logit function for the binary classification prob-
lem ynt ∈ {−1, 1} and wT

t ∈ RD represents a coefficient
vector for the t-th task. Then, the coefficient vector wt of T
tasks generates a coefficient matrix W = [w1, · · · ,wT ].

There is such a low-dimensional latent space that the
coefficient matrix W can be represented on low rank fac-
torization and sparse space. We denote W as the product
of two low rank matrices U and V , i.e. W = UV . where
U ∈ RD×M is the variable-latent matrix, V ∈ RM×T is the
latent-task matrix, and M � min (D, T ), M is the number
of latent basis. For the t-th task, wt = Uvt, where the t-th
column vector vt of V is weighting vector for the t-th task.
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The optimization function for this problem is,

min
U,V

T∑
t=1

1

Nt
L (yt,XtUvt) + γ1‖U‖1 + γ2‖U‖1,∞ + µ

T∑
t=1

(
‖vt‖spk

)2
(2)

where L (·, ·) is the empirical loss function, which is the
logistic loss

∑Nt

n=1 log
(
1 + exp

(
−ynt vTt UTxnt

))
for a bi-

nary classification problem; ‖U‖1 =
∑D
d=1

∑M
m=1 |udm| is

the `1 norm; ‖U‖1,∞ =
∑D
d=1

∥∥ud∥∥∞ is the `1,∞ norm;
‖vt‖spk is the k-support norm; where γ1, γ2, and µ are the
regularization parameters.

B. BALANCED SELF-PACED LEARNING
In this section, we will use the BSPL model for a single
task to obtain the sample difficulty matrix E of the training
samples. Assume that the training data can be divided into
L levels based on the difficulty of the data samples, E is a
three-dimensional matrix of RL×T ×Nt , whose row vector is
denoted as E = [e1, e2, · · · , eL]T and whose column vector
is denoted as E =

[
e1, e2, · · · , eT

]
. Each element etl in E

can be represented as a vector of RNt and its value range is
the discrete set {0, 1}.

In terms of the t-th single task, the goal of the BSPL
model is to jointly learn the model parameter θtl which is the
parameter of the decision function g and the latent sample
difficulty variable etl =

[
et,1l , · · · , et,Nt

l

]
by minimizing:

min
θtl ,e

t
l

Nt∑
n=1

et,nl L
(
ynt ; g

(
xnt , θ

t
l

))
+ µR

(
θtl
)
−

K∑
k=1

∑
nk

λke
t,nk
l

xnk
t ∈Clk

(3)

where et,nl ∈ {0, 1}, K is the number of classes, R (θtl ) is
the regularization term that can be expressed as R (θtl ) =∑Nt

n=1Gξ

[
A
(
(θtl )

T
x̃nt

)]
−A

(
(θtl )

T
xnt

)
, where x̃nt is the

noise feature and Gξ [·] is the expectation according to a
certain distribution. In our method, we add Gaussian noise
to R (θtl ). The function A (·) depends on the specific loss
function. µ denotes the corresponding coefficient, and Clk
means the k-th class. With a fixed θtl , the global optimum
et∗l =

[
et,1l , · · · , et,Nt

l

]
can be calculated by the following

rule,

et,n∗l =

{
1, if Lk (y

n
t ; g (x

n
t , θ

t
l )) < λk

0, otherwise
(4)

where Lk (ynt ; g (x
n
t , θ

t
l )) represents the loss of instances in

the k-th class.

C. UPDATING PROCESS
During the training process of the l-th level, the l-th row
vector el of E represents the sample difficulty vector of

the training samples. Therefore, we can train the model
parameters (E, W ) with the following strategies.

The update process of parameters in the algorithm is
generally completed in two stages. In the first stage, by
solving the equation 3, we can obtain the sample difficulty
coefficient etl in the l level of the t-th task by the BSPL
model. Specific calculations are shown in Step 1 and 2. In the
second stage, using the training samples which are selected
by el, the VSTG-MTL model is used to train W l by solving
the equation 2. Iteratively, when training processes of all L
levels are completed, the final training coefficient matrix W
is obtained by calculating the expectation of W 1 to WL.
Specific calculations are shown in Step 3 and 4 as follows.

Specifically, the algorithm updating process can be divided
into four steps. When L, θl, U init

l and V init
l are initialized,

the following four steps will be iteratively completed.
Step 1: Fix θtl , update etl .
First, for the t-th task, we fix θtl and then solve the

following problem to update etl :

et∗l = argmin
Nt∑
n=1

et,nl L (ynt ; g (x
n
t , θ

t
l ))−

K∑
k=1

∑
nk

λke
nk
l

xnk
t ∈Clk

= argmin
K∑
k=1

∑
nk

et,nkl

xnk
t ∈Clk

(
L
(
ynkt ; g

(
xnkt , θt,nkl

))
− λk

)
(5)

Step 2: Fix etl , update θtl+1.
For the t-th task, we fix etl and update θtl+1 by solving:

θt∗l+1 = argmin

(
Nt∑
n=1

et,nl L
(
ynt ; g

(
xnt , θ

t
l

))
+ µR

(
θtl
))

(6)

We use the gradient descent algorithm to update the equa-
tion above, then increase λk and return to the Step 1 to be
iteratively executed until all the instances are selected. Then,
we can get the sample difficulty coefficient vector etl of the
t-th task.

When all tasks are executed, we can obtain el =[
e1l , e

2
l , · · · , eTl

]
and E = [e1, e2, · · · , eL]T .

Step 3: Fix el, update Ul.
For each level of training tasks, we select the training

sample through el, i.e.

Xl = X (el is equal to 1) (7)

Similarly, we select the label yl corresponding to Xl.
Then, we update Ul with an alternating direction method of
multipliers and an early stopping. The objective function is
as follows:

Ul = argmin
Ul

(
T∑

t=1

1

Nj
L
(
yt
l ,X

t
lUlv

t
l

)
+ γ1‖Ul‖1 + γ2‖Ul‖1,∞

)
(8)
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Step 4: Fix Ul, update Vl.
We use accelerated proximal gradient descent to solve the

following equation and Vl =
[
v1
l , · · · ,vTl

]
:

vtl = argmin
vt
l

( T∑
t=1

1

Nj
L
(
ytl ,X

t
lUlv

t
l

)
+ µ

T∑
t=1

(∥∥vtl∥∥spk )2
)

(9)

Next, the algorithm iteratively executes the step 3 and 4
until the Ul and Vl coverage. After that, we calculate Wl =
UlVl.

Finally, it will repeat L times until the samples of all L
levels are trained and then the expectation of W1 to WL

could be seemed as the final calculation result W .

D. FLEXIBLE FRAMEWORK FOR SELF-PACED
MULTI-TASK LEARNING
To sum up, we can extract a general flexible framework for
self-paced multi-task learning, which is named the FSPMTL
algorithm shown in the following Algorithm 1.

TABLE 1: The Flexible Self-Paced Multi-Task Learning
(FSPMTL) Algorithm

Algorithm 1 Flexible Self-Paced Multi-Task Learning (FSPMTL)
Input: Dataset X and y

The number of data difficulty levels L
Output: Coefficient matrix W
1. for t=1:T do
2. for l=1:L do
3. select SPL model to train to get etl
4. end for
5. end for
6. el =

[
e1l , e

2
l , · · · , e

T
l

]
7. E = [e1, e2, · · · , eL]T
8. for l=1:L do
9. select training samples Xl and yl from X and y according to el
10. select MTL model for training based on Xl and yl to obtain Wl

11. end for
12. W = E [W1, . . . ,WL]
13. return W .

Let Oe be the time spent for solving the equation 5 and
6 once, and OW be the time spent for solving the equation
8 and 9 once. Thus, the time spent for the SPL part is
Oe ∗ L ∗ T and the time spent for the MTL part is OW ∗ L.
From the Algorithm 1, we can see that the model based on the
FSPMTL algorithm needsOe ∗L∗T +OW ∗L time for each
run. Moreover, as shown in Algorithm 1, the convergence of
the FSPMTL algorithm is depend on the convergence of the
SPL and MTL parts, which means the FSPMTL algorithm
will stop after the SPL model selects all the instances and the
MTL model reaches two residuals’ thresholds [21].

IV. EXPERIMENT
In this section, we aim to verify the effectiveness of the
FSPMTL algorithm under different experimental settings.
The Matlab implementation of our method is available at the
URL: http://yzhou.github.io/#Code.

A. EXPERIMENT SETTINGS
In order to prove the validity of our framework, the FSPMTL
algorithm is implemented based on the VSTG-MTL model
and named as FSP-VSTG-MTL. Here, we compared our
FSP-VSTG-MTL with the following methods:

• BSPL-STL method: it is a single-task learning method
based on balanced self-paced learning with Gaussian
noises [15].

• VSTG-MTL method: it decomposes the weight matrix
in the model into the product of two low rank matrices.
These matrices would simultaneously perform feature
selection among tasks and overlapping group structures
among learning tasks [21].

• spMMTL method: spMMTL is the acronym of Self-
Paced Mean Regularized Multi-task Learning, and the
model picks up the simple tasks based on the distance
of each task’s difficulty [14].

The parameter initialization of the FSP-VSTG-MTL is
divided into two parts. For the BSPL part, we selected half
of the data points during the first iteration and then updated
the λk with rise of 10% during the next iteration, that is,
L=6. Then we initially set et,nl = 1(n = 1, · · · , Nt) and
ran the corresponding classification algorithm for 5 itera-
tions to obtain an estimate of θl. For the VSTG-MTL part,
the number of latent bases M is selected from the search
grid {1, 3, 5, 7}. we set the third regularization parameter
µ to be equal to the first regularization parameter γ1. The
regularization parameters are selected from the search grid{
2−10, · · · , 23

}
. Initial estimates of the matrix W init

l is
implemented by logistic regression algorithm. The initial
estimates of U init

l and V init
l are given by singular value

decomposition of W init
l .

For experimental datasets, we first randomly selected the
data in the datasets with a ratio of 9:1 to obtain the training set
and testing set. In the training set, we used the five-fold cross-
validation method to get the model outputs. Then, we made
predictions on the testing set to get its final classification
effect. We ensure that the datasets used in each training and
testing process are consistent across different models. We
repeated each case 10 times and reported the average results.

B. SYNTHETIC DATASETS
We generated four synthetic datasets as follows, which have
different number of D dimensional variables and T tasks. The
instance xnt is sampled from a Standard Normal Distribution
N(0,1), and the response is ynt = sign(wT

t x
n
t +ξ

n
t ). To create

difficult instances, we added different noises to instances by
setting ξnt = σnt θ

n
t , where σnt is drawn i.i.d. from a Normal

Distribution N(0,5), and θnt is drawn i.i.d. from N(0, 1). A
true coefficient matrix W ∗ = [w∗1 , · · · ,w∗T ] has a low-rank
structure M = rank (W ) = 5 and is estimated by UV ,
where U ∈ RD×M and V ∈ RM×T . Each synthetic dataset
differs on the structure of the two matrices U and V .

Syn1: Syn1 has 25 dimensional variables and 20 tasks.
For r = 1, · · · ,M , the latent basis ur only has non-zero
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FIGURE 1: Results on four synthetic datasets with different number of instances, the dark blue solid line represents our
proposed model.

values from the (3r − 2)-th to the (3r + 3)-th components.
The nonzero values are generated by the Normal Distribu-
tion N(1,0.25). Similarly, for r = 1, · · · ,M , the weighting
vectors v4r−3, · · · ,v4r only have nonzero values on the
r-th and (r + 1)-th components. The last four weighting
vectors v4M−3, · · · ,v4M only have the nonzero values on
the (M − 1)-th and M -th components. The nonzero values
are generated through a Uniform Distribution from 1 to 1.5.

Syn2: Syn2 has 50 dimensional variables and 20 tasks. For
r = 1, · · · ,M , the latent basis ur only has non-zero values
from the (8r−7)-th to the (8r+8)-th components. Similarly,
V is generated in the same way as Syn1. The nonzero values
are generated by the same distribution as that used in Syn1.

Syn3: Syn3 has 25 dimensional variables and 40 tasks. U
is generated in the same way as Syn1. Similarly, for r =
1, · · · ,M , the weighting vectors v8r−7, · · · ,v8r only have
nonzero values on the r-th and (r + 1)-th components. The
last four weighting vectors v8M−7, · · · ,v8M only have the
nonzero values on the (M − 1)-th and M -th components.
The nonzero values are generated by the same distribution as
in Syn1.

Syn4: Syn4 has 50 dimensional variables and 40 tasks.
Similarly, U is generated in the same way as Syn2, V is

generated in the same way as Syn3. The nonzero values are
generated by the same distribution as in Syn1.

Varying Number of Instances: To verify the effect of
numbers of instances on the learning performance of MTL
models, we varied the number of instances in parameter
learning. For each task, we increased the total number of
instances of each dataset from 50 to 300, by adding 25 each
time. Each experiment will be repeated for 10 times, and the
results are reported with the mean of the F1-score. Figure
1 summarizes the experimental results on four synthetic
datasets above. As we can see, for single-task leaning (BSPL-
STL), the growth of instance number would improve learning
performance significantly. However, for MTL methods, the
performance not only relies on the number of task instances,
but also the number of dimensions. In addition, compared
to the state-of-the-art model (VSTG-MTL, spMMTL) , our
proposed FSP-VSTG-MTL is better off in most settings. It’s
worth noting that the performance of our model is 2.20%,
3.28%, 1.55% and 1.00% higher than that of the VSTG-MTL
model on four synthetic datasets, respectively. Besides, to
verify the flexibility of our proposed framework, we extended
spMMTL with our flexible learning framework to see if it
could be further improved.
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FIGURE 2: Results on four synthetic datasets with different number of instances, the solid lines represent the extended model
FSP-spMMTL.

Flexibility Test of the Proposed Framework: To further
verify the flexibility of our framework, we extended the
framework into the spMMTL model and named it FSP-
spMMTL model. The parameter initializations of these mod-
els are set with reference to [14]. As can be seen in Figure 2,
the solid line always goes higher than its corresponding dot-
ted line. Specifically, the FSP-spMMTL model is better than
the spMMTL model by 5.35%, 7.92%, 5.90% and 7.27%
on four synthetic datasets, respectively, which demonstrates
that our flexible learning framework has achieved excellent
results. Therefore, adding the FSPMTL framework during
training process can effectively improve the performance of
the model.

Robustness Test of The Proposed Framework: If we
change the level of noise in the datasets, the learning dif-
ficulty of models will change as well. In order to do this,
the Normal Distribution of σnt would be varied from N(0,1)
to N(0,10), increasing the variance by one each time. Mean-
while, we set 100 instances for each task. Figure 3 shows
that each model performances are becoming worse as noises
increase. When the noise stays at a low level, the FSPMTL
framework has little impact on model learning. When the
variance of σnt is 1-5, on average, FSP-VSTG-MTL only per-

forms better than VSTG-MTL by 1.03%, 2.54%, 1.28% and
-0.05% and FSP-spMMTL performs better than spMMTL by
4.76%, 10.14%, 4.54% and 10.64% on four synthetic datasets
above. However, with the rise of the noise, the advantages
of FSPMTL framework are emerging. Specifically, when the
variance of σnt is 6-10, averagely, FSP-VSTG-MTL performs
better than VSTG-MTL by 4.15%, 6.44%, 3.26% and 2.67%
and FSP-spMMTL performs better than spMMTL by 9.42%,
13.91%, 10.87% and 15.97%. The results demonstrate the
superiority and flexibility of the FSPMTL framework.

Visualization of The Selected Samples: In order to make
our experiment clearer, we took the first task as an example
to visualize the selected samples with our FSP-VSTG-MTL
algorithm. When the task contains 100 instances, we first
selected 50% of samples when l = 1, and then increased each
level by 10% of samples. For the selected samples, we used
the Principal Component Analysis (PCA) to project original
data into a lower-dimensional sub-space, and visualized the
first two dimensions. As shown in Figure 4, when l = 1, there
is a clear boundary between positive samples distribution and
negative samples distribution. With the increase the l, the
number of the selected samples increases gradually and the
overlap area of samples distributions in in two dimensions
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FIGURE 3: Results on four synthetic datasets with 10 different sample noises, two solid lines represent the extended models
FSP-VSTG-MTL and FSP-spMMTL.
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FIGURE 4: 2-D distribution of the selected samples in different levels with our FSP-VSTG-MTL algorithm in different sample
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also increases gradually, which means the selected samples
are increasingly difficult to distinguish. This is the reason
why our FSPMTL algorithm could get increased classifica-
tion accuracy and robustness.

C. REAL-WORLD DATASET
London School Data (school) In order to further verify the
feasibility of our method, we conducted experiments by using
the classification dataset which is generated from the dataset
of classic school dataset. The school dataset is a regression
dataset obtained internally by the London Education Author-
ity, including test scores of 15,362 students in 139 secondary
schools in London during three years from 1985 to 1987.
The dataset contains 139 tasks and 15,362 observations cor-
responding to different schools and their student’s test. Each
observation is contained by 3 continuous variables and 23
binary variables, representing the professional attributes of
the school and students. In this experiment, the school dataset
is discretized. There are 6984 positive samples whose score
are higher than 20, accounting for 45.46% of the sample
size and 8,378 negative samples, lower than or equal to 20,
accounting for 54.54%. The ratio of positive and negative
samples is close to 1:1.

TABLE 2: The F1-score of different methods on the real
school dataset. The statistically best models are highlighted
in bold.

Methods BSPL-STL VSTG-MTL FSP-VSTG-MTL spMMTL FSP-spMMTL
F1-score 0.6269±0.0133 0.7234±0.0097 0.7272±0.0103 0.7138±0.0104 0.7234±0.0108

Table 2 shows the results of our model on the real dataset.
It can be seen that FSP-VSTG-MTL is superior to all other
models in school dataset, thus confirming the effectiveness of
our proposed FSPMTL framework. Specifically, BSPL-STL
is one of the latest single-task learning models, yet it is weak
in handling school dataset. All the MTL methods proposed
in the past two years have achieved better classification pre-
diction results than single-task learning model. In addition,
FSP-VSTG-MTL and FSP-spMMTL proposed by this paper
are superior to the latest VSTG-MTL and spMMTL models,
which are 0.53% and 1.39% respectively. To sum up, by
incorporating the self-paced learning regime into MTL, our
method is effective in these experiments.

V. CONCLUSION
In this paper, we propose the Flexible Self-Paced Multi-
Task Learning framework with a loosely coupled approach
to combine the MTL model with the SPL model. In this
way, it can be flexibly embedded different MTL models
into SPL models. Extensive experiments show that our new
framework not only effectively improves the performance of
the traditional model, but also increase the flexibility and
robustness of the model. For future work, we would like to
introduce the prior knowledge in the framework and apply
this method in real-world applications.
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